An EDAS Method-Based Clustering Study to Assess the Logistics Performances of Selected Countries
DOI:
https://doi.org/10.5281/zenodo.10406516Abstract
The importance of environmentally friendly logistics activities is increasing day by day due to the intensifying globalization and increasing trade volumes of countries. Undoubtedly, the logistics industry contributes positively to national economies; however, this increasing contribution brings environmental concerns. The total amount of CO2 emissions caused by transportation varies depending on the countries’ efforts on green strategies. In this case, it is thought that clustering countries based on their logistics performance indices and CO2 emissions from transportation may contribute to the sustainable development goals of actors that play an active role in global trade movements. This research study investigates Turkey's position in global trade logistics relative to its competitors, taking into account the Logistics Performance Index (LPI) and the total CO2 emission values from transportation. For this purpose, the hierarchical K-means clustering analysis was conducted using the six criteria of the LPI published by the World Bank in 2018 and the CO2 transport-related emission values of 44 countries. The R programming language was used for clustering analysis. According to the analysis results of the study, 44 countries were divided into 4 clusters in terms of their logistics performance and CO2 emissions sourced by transportation. In addition, performance evaluations of clustered countries were carried out with the EDAS method, which is one of the Multi-Criteria Decision Making (MCDM) methods on each cluster basis. According to the results obtained from the EDAS method, the countries within each cluster are ranked from the best to the worst. This study can provide a practical framework for countries to improve their logistics performance with low carbon footprint applications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The copyright in this website and the material on this website (including without limitation the text, computer code, artwork, photographs, images, music, audio material, video material and audio-visual material on this website) is owned by the European Journal of Digital Economy Research (EJDER) and its licensors.
This work is licensed under a Creative Commons Attribution 4.0 International License.
EJDER grants to you a worldwide non-exclusive royalty-free revocable license to:
- view this website and the material on this website on a computer or mobile device via a web browser;
- copy and store this website and the material on this website in your web browser cache memory; and
- print pages from this website for your use.
- All papers published by EJDER are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.
EJDER does not grant you any other rights in relation to this website or the material on this website, i.e. all other rights are reserved.
For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or EJDER prior written permission.